Identification of Candidate Active Site Residues in Lysosomal β-Hexosaminidase A*

(Received for publication, April 22, 1996, and in revised form, October 9, 1996)

Maria J. G. Fernandes‡§, Sandy Yew§, Daniel Leclerc‡, Bernard Henrissat¶, Constantin E. Vorgias||**, Roy A. Gravel‡§‡‡§§, Peter Hechtman‡§‡‡§§, and Feige Kaplan‡ ‡‡§§¶¶

From ‡ McGill University-Montreal Children's Hospital Research Institute, Departments of §Biology, ‡‡Human Genetics, and §§Pediatrics, McGill University, Montreal, Canada H3H 1P3, ¶Centre de Recherches sur les Macromolécules Végétales, CNRS, Grenoble F-38041, Cedex 9, France, and ∥European Molecular Biology Laboratory (EMBL), 22603, Hamburg, Germany

The β -hexosaminidases (Hex) catalyze the cleavage of terminal amino sugars on a broad spectrum of glycoconjugates. The major Hex isozymes in humans, Hex A, a heterodimer of α and β subunits ($\alpha\beta$), and Hex B, a homodimer of β subunits ($\beta\beta$), have different substrate specificities. The β subunit (*HEXB* gene product), hydrolyzes neutral substrates. The α subunit (HEXA gene product), hydrolyzes both neutral and charged substrates. Only Hex A is able to hydrolyze the most important natural substrate, the acidic glycolipid GM2 ganglioside. Mutations in the HEXA gene cause Tay-Sachs disease (TSD), a GM₂ ganglioside storage disorder. We investigated the role of putative active site residues Asp- α 258, Glu- α 307, Glu- α 323, and Glu- α 462 in the α subunit of Hex A. A mutation at codon 258 which we described was associated with the TSD B1 phenotype, characterized by the presence of normal amounts of mature but catalytically inactive enzyme. TSD-B1 mutations are believed to involve substitutions of residues at the enzyme active site. Glu- α 307, Glu- α 323, and Glu- α 462 were predicted to be active site residues by homology studies and hydrophobic cluster analysis. We used sitedirected mutagenesis and expression in a novel transformed human fetal TSD neuroglial (TSD-NG) cell line (with very low levels of endogenous Hex A activity), to study the effects of mutation at candidate active site residues. Mutant HEXA cDNAs carrying conservative or isofunctional substitutions at these positions were expressed in TSD-NG cells. aE323D, aE462D, and aD258N cDNAs produced normally processed peptide chains with drastically reduced activity toward the α subunitspecific substrate 4MUGS. The α E307D cDNA produced a precursor peptide with significant catalytic activity. Kinetic analysis of enzymes carrying mutations at Glu- α 323 and Asp- α 258 (reported earlier by Bayleran, J., Hechtman, P., Kolodny, E., and Kaback, M. (1987) Am. J. Hum. Genet. 41, 532-548) indicated no significant change in substrate binding properties. Our data, viewed in the context of homology studies and modeling, and studies with suicide substrates, suggest that Glu- α 323 and Asp- $\alpha 258$ are active site residues and that Glu- $\alpha 323$ is involved in catalysis.

The β -hexosaminidases (Hex¹, EC 3.2.1.52) are lysosomal hydrolases that catalyze the cleavage of terminal β -N-acetylglucosamine or β -N-acetylgalactosamine residues on a broad spectrum of glycoconjugates. The major Hex isozymes in humans are: Hex A, a heterodimer composed of one α and one β subunit and Hex B, a homodimer of two β subunits. A third isozyme, Hex S, is composed of two α subunits, which are unstable and not normally found in most tissues. The α and β subunits are structurally related, sharing 60% amino acid identity in the mature form (1, 2). Both subunits are catalytically active with different but overlapping substrate specificities (3). The β subunit, in Hex A and Hex B, hydrolyzes neutral substrates, whereas the α subunit, in Hex A and Hex S, hydrolyzes neutral substrates as well as substrates bearing a negative charge either on the terminal sugar (e.g. $GlcNac-SO_4$) or on a distinct residue (e.g. sialic acid) (4). The latter includes the most important natural substrate, the sialic-acid containing glycosphingiolipid, GM₂ ganglioside, found mainly in neuronal tissue. Only Hex A catalyzes cleavage of the terminal β -Nacetylgalactosamine on GM₂ ganglioside in the presence of the substrate-specific protein cofactor, the GM2-activator protein (5)

Mutations in the *HEXA*, *HEXB*, and *GM2A* genes, encoding the α and β subunits of Hex A and the GM₂ activator, respectively, lead to a group of inherited neurodegenerative diseases, collectively known as the GM₂ gangliosidoses, that are characterized by lysosomal accumulation of GM₂ ganglioside mainly in neuronal tissue. These disorders range in severity from Tay-Sachs disease (TSD), a progressive and fatal neurodegenerative disorder of infancy, to clinically milder or later onset forms of GM₂ gangliosidosis occurring in patients with some residual enzyme activity (reviewed in Gravel *et al.* (6)).

Although more than 70 mutations at the human *HEXA* locus, and 14 at the *HEXB* locus have been described (6), few have revealed information about the location or properties of the α and β subunit active sites. A subset of *HEXA* mutations, known as the B1 mutations, lead to production of normal amounts of mature Hex A, which is deficient in α subunit catalytic activity without affecting β subunit activity (7). The B1 mutations are thus compatible with normal maturation of Hex subunits and delivery of structurally intact Hex A to the lysosome. The presence of a mature Hex A, unable to hydrolyze charged substrates, suggested that the B1 biochemical pheno-

^{*} This work was supported by grants from the Medical Research Council of Canada (to P. H. and F. K.) and the Canadian Genetic Diseases Network (to R. A. G.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked *"advertisement"* in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

^{**} On leave at Athens University.

¹¹ To whom correspondence should be addressed: McGill University-Montreal, Children's Hospital Research Institute, 2300 Tupper St., Montreal, PQ Canada H3H 1P3. Tel.: 514-934-4417; Fax: 514-934-4329.

¹ The abbreviations used are: Hex, hexosaminidase; TSD, Tay-Sachs disease; *HEXA*, *HEXB*, and *GM2A*, the genes for the α and β subunits of Hex A and the GM₂ ganglioside activator protein, respectively; 4MU, 4-methylumbelliferone; 4MUG, 4-methylumbelliferone β -N-acetylglucosamine; 4MUGS, 4-methylumbelliferone N-acetylglucosamine-6-sulfate; NG, neuroglial; PCR, polymerase chain reaction.

type might be associated with mutations at or near the α subunit active site (4, 7, 8). The first B1 mutations described were α R178H and α R178C (7–9). *In vitro* generated mutation at the homologous site to Arg- α 178 in the β subunit, Arg- β 211, resulted in production of mature Hex B devoid of catalytic activity (10). More recently, we identified a third B1 mutation, α D258H (11). Both Arg- α 178 and Asp- α 258 have been proposed as candidates for participation at or near the active site of the α subunit.

The mechanism of cleavage of glycosidic bonds by Hex remains unclear. Sinnott (12) has proposed that glycosyl hydrolases employ an acid-catalysis mechanism involving the participation of two acidic residues (a proton donor and a nucleophile) at the active site, as identified in glycoside cleavage by β -glucosidases (13–16), α -glucosidases (17), β -glucanases (18–20), β -galactosidases (21–23), and chitinases (24, 25) and the β -Nacetylglucosaminidase (chitobiase) (26). In contrast, based on inhibition studies using nitrogen-containing substrate inhibitors, Legler and Boothagen (27) and Legler *et al.* (28) proposed that the mechanism of Hex catalysis involves both an acidic and a basic residue and depends on a transition state in which the glycosidic O of the substrate is joined with the acetyl group of the pyranose ring, a mechanism fundamentally different from that of other glycosidases.

In this study, we investigated candidate active site residues in the α subunit of Hex A through analysis of mutations that affect catalytic activity without disrupting maturation of the enzyme. We introduced conservative mutations at residue Asp- α 258, as well as at three glutamic acid residues (Glu- α 307, Glu- α 323, and Glu- α 462) which are evolutionarily invariant in family 20 of glycosyl hydrolases using the classification system of Henrissat (29). We then studied the impact of these substitutions on enzyme activity and maturation after transfection of mutant cDNAs using an SV40-transformed neuroglial (NG) cell line established from a fetus with Tay-Sachs disease which is devoid of endogenously expressed α subunits but produces functional β subunits.

EXPERIMENTAL PROCEDURES

Cell Culture—NG141 (NG) and NG125 (TSD-NG), SV40-transformed fetal TSD and normal neuroglial cell lines, respectively, were provided by L. Hoffman and S. Brooks (Kingsbrook Jewish Medical Center, Brooklyn, NY). Cells were cultured in α -minimum essential medium with 15% fetal calf serum and antibiotics.

Recombinant Plasmids—The Escherichia coli β-galactosidase gene, in pSVLßgal (Clontech), was used as a reporter gene to control for transfection efficiency. The cloned human HEXA cDNA (1) was inserted into pRCCMV and pREP4 (Invitrogen) to produce pRCCMV α and pREP4 α . Preparation of PRCCMV α involved: 1) subcloning the HEXA cDNA from PSVLa into pCRII (Invitrogen) as an XhoI/BamHI fragment, 2) subcloning of an NsiI HEXA cDNA-containing fragment PCRII subclone into the PstI site of pBluescript (Stratagene), 3) subcloning an XhoI/XbaI fragment from pBluescript into a PCRII intermediate, and 4) cloning a NotI/XbaI HEXA cDNA-containing fragment from the PCRII subclone into PRCCMV. Preparation of pREP4 α involved cloning the XhoI/BamHI HEXA cDNA-containing fragment from PSVL α into pREP4. Construction of pCMV α required creating a HEXA cDNA flanked by NotI sites. The HEXA cDNA insert in pRCCMV α has a NotI site at the 5' end of the gene. This insert was subcloned into the BamHI site of pBluescript (KS-, Stratagene) introducing a second NotI site downstream from the 3' end of the gene. This step permitted the cloning of the insert into the unique NotI site of pCMV α . All plasmids were purified on Qiagen columns prior to transfection.

Site-directed Mutagenesis—Mutations were introduced into the HEXA cDNA using a modified protocol of the Clontech Transformer Mutagenesis Kit. The second screening step for mutant clones was omitted. Mutant clones were identified after the first screen by PCR amplification of samples of isolated disrupted bacterial colonies followed by restriction enzyme digestion or allele-specific hybridization of amplified product to identify mutant genotypes. Mutations were introduced into pSVL α , a cassette containing the altered sequence was subcloned into pBS(KS)HEXA, and the full-length mutant cDNA was

subsequently subcloned into pCMV. Mutant pCMV α inserts were sequenced (Pharmacia T7 sequencing kit) and the plasmids purified on Qiagen columns prior to transfection.

Transfection—For transient expression in cell line NG 125, subconfluent T175s (175 cm², Sarstedt) were harvested by trypsinization and washed twice with 1 × phosphate-buffered saline. The cell pellet was resuspended in Optimem medium (Life Technologies, Inc., containing 5% fetal bovine serum) to obtain a final concentration of 6 × 10⁶ cells/ml. Cell suspension (800 µl), 20 µg of pCMV α , and 2 µg of pSVL β gal were placed in a 0.4-cm cuvette, mixed, placed on ice for 5 min, and pulsed (500 microfarads, 400 V) using a Bio-Rad electroporation apparatus. The time constant was between 16 and 18 ms. After 15 min on ice, 800 µl of α -minimum essential medium (without antibiotics) was added to the suspension. For the β -galactosidase qualitative assay, 250 µl of transfected cell suspension were plated on 12 multiwell plates. The remainder of the transfected cell suspension was grown for 48 h in a T75 (75 cm²).

Enzyme and Protein Assays—A qualitative β -galactosidase assay was performed to determine the percentage of surviving cells which expressed bacterial enzyme. Multiwell-plated cells were incubated as described by Lake (30). After 24-h incubations the number of blue cells was estimated microscopically. Harvested cells were lysed by freezethawing in 0.25 $\rm {\ensuremath{{\rm M}}}$ Tris-HCl (pH 7.4) and protein determined by the Bradford method (Bio-Rad). A fluorescent assay (31) was adapted for quantitation of β -galactosidase activity in transfected cell lysates. The reaction mixture contained 3 μl of 100 \times magnesium solution (4.5 ${\rm m}$ 2-mercaptoethanol, 0.1 M MgCl₂), 100 µl of 0.5 mM 4 methyl-umbelliferyl β -D-galactoside, and approximately 2–5 μ g of lysate protein in 0.1 M sodium phosphate buffer (pH 7.5) in a volume of 334 ml. After incubation at 37 °C for 15 min, fluorescence, due to release of 4MU, was determined using a Perkin-Elmer spectrofluorimeter (excitation wavelength, 360 nm; emission, 447 nm). Hexosaminidase activity was also determined fluorometrically using either 4MUGS (α subunit substrate) (32) or the 4MUG (β subunit) substrate.

Western Blot Analysis—The enhanced chemiluminescence (ECL) Western blotting kit from Amersham Corp. was used to detect the presence of the Hex A α subunit with a polyclonal rabbit anti-human Hex A antibody. Both the primary and secondary (rabbit Ig, horseradish peroxidase-labeled antibody) antibodies were used at a 1:5000 dilution.

Chromatofocusing of Transfected Cell Extracts—The hexosaminidase isoenzyme profile in cell lysates was determined by chromatofocusing using the Pharmacia Polybuffer Exchanger (PEB) system according to a modified protocol of O'Dowd *et al.* (33). Transfected cell extracts were freeze-thawed (three times) in 0.025 M imidazole buffer (pH 7.4), and the protein concentration was determined by the Bradford method. All steps were carried out at 7 °C. Approximately 1 ml of PEB74 slurry was used to prepare a column in a 1-ml syringe. The column was washed with the equivalent of $1.5-2 \times$ bed volume with 0.025 M imidazole. The protein extract was added after passing $2 \times 100 \ \mu$ l of Polybuffer (pH 4.0) through the column. Four hundred-microliter fractions were collected. Sodium citrate buffer (0.13 M, pH 3.46) was used to elute Hex S after a pH of 4.0 was reached using a pH gradient.

Kinetic Analysis—The K_m and K_i for wild type and mutant Hex A proteins were determined using 4MUGS substrate at concentrations from 1.0 to 7.5 mM. For inhibition studies, the competitive inhibitor N-aetylglucosamine-6-phosphate (Sigma) was added to a final concentration of 10 mM.

RESULTS

Expression of the HEXA Gene in TSD-NG Cells—The endogenous activity of NG cells toward the α -specific substrate 4MUGS was 715 \pm 13 nmol/mg/h. In untransfected TSD-NG cells, the rate of 4MUGS hydrolysis is <1% of that in NG cells. This trace activity is probably due to the residual action of Hex B on 4MUGS (32).

In order to maximize α subunit expression through transfection, several vectors carrying the *HEXA* gene cDNA were assessed for their ability to drive expression of enzymatic activity when transfected into TSD-NG cells. Transfection efficiency (percent surviving cells catalyzing 5-bromo-4-chloro-3-indoyl β -D-galactoside hydrolysis) was determined to be 10–20%. Hexosaminidase activity in cells transfected with 20 μ g of plasmids pSVL α , pRCCMV α , pREP4 α , or pCMV α was at least 10-fold higher than activity in mock-transfected cells (Table I). The highest level of expression (approximately 1000 × mock-trans-

HEAA gene expression in TSD-IVG cells		
Vector	$\begin{array}{c} \text{Time} \\ \text{harvested}^a \end{array}$	Hex activity ^{b}
	h	nmol/h/mg
Untransfected NG cells		$715(\pm 13)$
Untransfected TSD-NG cells		$3(\pm 2)$
$\mathrm{pSVL}lpha^c$	48	$43(\pm 15)$
$pRCCMV\alpha$	48	$358 (\pm 52)$
$pREP4\alpha$	48	$611(\pm 12)$
$pCMV\alpha$	24	$1825 (\pm 246)$
$pCMV\alpha$	48	$3986 (\pm 529)$
$pCMV\alpha$	72	$7145 (\pm 365)$

 TABLE I

 HEXA gene expression in TSD-NG cells

^a Hours post-transfection.

^b Nanomoles of 4MUGS hydrolyzed/h/mg of protein.

^c All transfections into TSD-NG cells.

fected cells) was achieved when cells were transfected with pCMV α . Further analysis of Hex activity in TSD-NG cells at 24, 48, and 72 h post-transfection with pCMV α (Table I) showed that activity continued to increase throughout the 72-h period. The pCMV α plasmid expressed over a 48-h incubation period post-transfection was selected for all subsequent experiments.

Western blot analysis of transfected (pCMV α and pSVL β gal) and mock-transfected (pSVL β gal) cell extracts confirmed that the increase in 4MUGS activity in TSD-NG cells is associated with α subunit expression (Fig. 1, *lane N*). Both precursor and mature α subunit are absent in mock-transfected TSD-NG cell extracts (Fig. 1, *lane M*) and present in cells transfected with pCMV α .

In order to determine whether the α subunits encoded by the *HEXA* cDNA were expressed as the heterodimeric enzyme Hex A $(\alpha\beta)$ or the homodimeric species Hex S $(\alpha\alpha)$, the Hex isozyme forms in transfected TSD-NG cell lysates were resolved by chromatofocusing. Fig. 2a illustrates the chromatofocusing profile of TSD-NG cells transfected with pCMV α and assaved with 4MUG (all Hex) and 4MUGS (Hex A and Hex S) to detect all Hex isozyme species. All three hexosaminidase isoenzymes were present, and eluted at their expected pIs. Hex S was the isoenzyme present in greatest abundance followed by Hex A and Hex B respectively. This high expression of the nonphysiological Hex S in TSD-NG cells is the most likely due to the massive overexpression of α subunits in the face of limiting, endogenously produced β subunits. Total Hex activity in pCMV α transfected TSD-NG cells (harvested at 48 h posttransfection) is 5-6-fold greater than endogenous Hex activity in untransfected normal NG cells (Table I). Given an efficiency of transfection of 10-20%, the transfected cells express up to 60-fold greater Hex activity than normal untransfected NG cells. Despite overwhelming α subunit synthesis, a significant proportion (22%) of the transfected gene product is expressed as the Hex A heterodimer as shown by the chromatofocusing profile (Fig. 2).

Expression of HEXA Mutations—In order to evaluate the expression of mutant α subunits in TSD-NG cells, we initially examined mutations known to cause the infantile acute (α R170W) (11) subacute (α G250D) (35) and chronic (α G269S) (37) forms of GM₂ gangliosidosis. The mutant cDNAs were expressed in TSD-NG cells (Table II) and cell lysates assayed for Hex A specific activity using 4MUGS. Hex A activity in lysates of α G269S- and α G250D-transfected TSD-NG cells was <4% and 1.5%, respectively, of the activity measured after transfection with wild type pCMV α . These Hex A activities were 9- and 4-fold greater than mock-transfected activity measured with the 4MUGS substrate. In contrast, expression of α R170W exhibited no significant 4MUGS activity above that of mock transfected cells. Western blot analysis showed that the α

FIG. 1. Western blot analysis of TSD-NG cells transfected with A, pCMV α G269S (*HEXA* mutation associated with adult onset TSD); J, pCMV α G250D (*HEXA* mutation associated with juvenile onset TSD); I, pCMV α R170W (*HEXA* mutation associated with infantile classical TSD); and N, pCMV α (wild type α subunit). α_p and α_m indicate precursor and mature forms of Hex A α subunit. Lane M represents mock-transfected cells.

subunit synthesized by all three mutant cDNAs appeared in the precursor form (Fig. 1, *lanes A*, *J*, and *I*). Only the α G269S mutation appeared to be associated with expression of a small amount of mature α subunit (Fig. 1, *lane A*). These results are compatible with previous findings on α G269S (34) and α G250D (35) in COS cell expression studies and demonstrate complete inactivation of Hex A by the α R170W mutation consistent with the infantile TSD phenotype. In the latter case, the R170W substitution is associated with expression of an α subunit precursor (Fig. 1, *lane I*) but not with its maturation and targeting to the lysosome.

Analysis of Putative Active Site Residues-We next examined the expression in TSD-NG cells of mutations at amino acid residues which are candidates for participation in the Hex A α subunit catalytic site. To assess the role of mutation at residue Asp- $\alpha 258$ ($\alpha D258H$), first described in association with the B1 biochemical phenotype of TSD, HEXA cDNA constructs carrying the conservative or isosteric substitutions $\alpha D258H$, α D258E, or α D258N were expressed in TSD-NG cells and Hex A activity measured in transfected cell lysates. All three mutations resulted in negligible or trace amounts of Hex A activity, with α D258N exhibiting 2-fold background and the others the same activity as measured in mock-transfected cells (Table III, Experiment 1). Western blot analysis of transfected cell extracts (Fig. 3), revealed that maturation of pro- α chains carrying the α D258H mutation was reduced. In contrast, expression α D258N and α D258E mutant cDNAs resulted in production of mature α subunit. Chromatofocusing of α D258N cell extracts revealed that this mutation significantly reduced 4MUGS hydrolysis by Hex A and Hex S (data not shown). The 4MUG hydrolysis of Hex A was reduced to a lesser extent. This result was expected since 4MUG hydrolysis is catalyzed by both the α and β subunits of Hex A.

We then studied the effects of mutation at conserved residues Glu- α 307, Glu- α 323, and Glu- α 462, predicted as candidate active site residues by homology studies and hydrophobic cluster analysis of family 20 glycosyl hydrolases. Fig. 4, *a* and *b*, illustrate multiple alignment of the two regions of family 20 enzymes which produce significant alignment. *Asterisks* indicate the three evolutionarily invariant glutamate residues identified as candidate active site residues using the classification system of Henrissat. Other invariant amino acids are also indicated.

HEXA cDNA constructs carrying the conservative substitutions α E307D, α E323D, or α E462D were expressed in TSD-NG cells and Hex activity measured in transfected cell lysates. All three substitutions had dramatic effects on catalytic activity (Table III, Experiment 2). α E323D did not exhibit any 4MUGS activity above background whereas α E462D and α E307D exhibited 14- and 60-fold 4MUGS activity above the background activity obtained in mock transfected cells respectively. West-

b

CHROMATOFOCUSING OF aE323D EXTRACTS

FIG. 2. Chromatofocusing of NG cell extracts transfected with pCMV α , pCMV α E323D, and pCMV α E462D and assayed with the synthetic substrates 4MUG (\blacksquare [sbond \blacksquare) and 4MUGS ($\bigcirc \frown \bigcirc$). Activity peaks for Hex B, Hex A, and Hex S are indicated. (\longrightarrow) pH gradient.

ern blot analysis of transfected cell extracts showed that only the α E323D and α E462D mutations were compatible with synthesis of significant amounts of precursor and mature α subunit (Fig. 5). Chromatofocusing of α E323D and α E462D cell extracts confirmed that the Hex A isoenzyme is processed normally but has a catalytically defective α subunit that is unable to hydrolyze 4MUG or 4MUGS (Fig. 2, *b* and *c*). The α E307D mutation, however, dramatically reduces α subunit maturation.

TABLE II Expression of GM2 gangliosidosis mutations

Vector	$\begin{array}{c} \text{Age of onset} \\ \text{of } \mathrm{TSD}^a \end{array}$	${ m Hex}/eta-{ m galactosidase}\ { m activity}^b$
pCMV α pCMV α G269S pCMV α G250D pCMV α R170W	Normal Adult Juvenile Infantile	$\begin{array}{c} 49.0\ (\pm 15) \\ 1.5\ (\pm 0.8) \\ 0.67\ (\pm 0.3) \\ 0.20\ (\pm 0.08) \\ 0.12\ (\pm 0.08) \end{array}$

 a Age of onset of TSD in patients carrying indicated mutations. b The numbers express a ratio. Hex and β -galactosidase activity were expressed as nanomoles/h/mg of protein.

	TABLE III	
Effect of substitutions a	at putative active site residues on	Hex A activity
C	II	

Genotype	Hex/β -galactosidase ratio
Experiment 1	
Wild type	$88.0(\pm 32)$
$\alpha D258H$	$0.15(\pm 0.04)$
$\alpha D258E$	$0.15~(\pm 0.05)$
$\alpha D258N$	$0.37 (\pm 0.06)$
Mock	$0.13~(\pm 0.07)$
Experiment 2	
Wild type	$36(\pm 14)$
$\alpha E307D$	$3.6(\pm 0.5)$
α E323D	$0.2~(\pm 0.09)$
$\alpha E462D$	$0.85~(\pm 0.13)$
Mock	0.06

FIG. 3. Western blot analysis of TSD-NG cells transfected with pCMV α D258H (*D*/*H*), pCMV α D258E (*D*/*E*), pCMV α D258N (*D*/*N*,) and pCMV α (*N*). Lane *M* represents mock-transfected cells.

Kinetic experiments were performed to evaluate the impact of the α E323D mutation on the binding affinity of Hex A for the substrates 4MUGS and for the competitive inhibitor N-acetylglucosamine-6-PO₄ (Fig. 6). The Lineweaver-Burke plots for the wild type enzyme are monophasic, representing the contribution of a single active site to the hydrolysis of 4MUGS. In contrast, the kinetics of hydrolysis of this substrate by the Hex A αE323D enzyme are biphasic revealing a significant contribution of a second active site (the β subunit) at high substrate concentrations. When the kinetic parameters of the high affinity site are evaluated the K_m for 4MUGS is 2.5 mm for Hex A α E323D compared to 1.7 mM for the wild type enzyme. Similiarly K_i values for the competitive inhibitor are 15.6 mM for the α E323D-substituted Hex A and 11.0 mM for wild type Hex A. We showed, previously, that the K_m for Hex A in fibroblasts from a patient carrying the D258H allele (and a null allele) was identical to that of wild type enzyme (7).

DISCUSSION

 β -Hexosaminidase catalyzes the hydrolysis of its glycoside substrates by a "retaining" mechanism in which the anomeric configuration of the substrate remains unchanged (12, 36). Most retaining glycosidases employ an acid catalysis mechanism in which two amino acids function respectively as proton donor and nucleophile (12). Alternatively, glycosaminidases may employ a second mechanism, termed substrate-assisted catalysis, in which an acidic residue and a basic residue par-

	HEXA HUMAN	WGALRGLETESOLV-WKSAEGTEETNKTEIEDEPEEPHRGLLLDT	176
	URYN WOUGH		170
	HEXA_MOUSE	WGALKGLEIF SQLV - WASAEGIFFI NAIKIKDFPRFPARGVLLDT	1/0
	HEXE_HUMAN	WGALRGLETFSQLV-YQDSYGTFTINESTIIDSPRFSHRGILIDT	209
	HEXB_MOUSE	WGALRGLETFSQLV-YQDSFGTFTINESSIADSPRFPHRGILIDT	188
	HEXB FELCA	WGVLRGLETFSQLI-YQDSYGTFTVNESDIIDSPRFPHRGILIDT	151
	HEXA DICDI	YGAMRGLETFKOLIVYNELENSYSTVCVSTSDSPRYPWRGFMVDS	164
	URVI ENTUT	VCADUA FETTI AL TOTOCON FUTCO	150
	HEAL ENTHI	IGARNAFEILIGLIKISSNKFVISGLPIKISDAPKFKWRGLMVDP	120
	HEXI_CANAL	WGALHGLVSLQQLIIHTS-EDKYVVPSSVTISDFPNFKHRGLMIDS	175
	HEXC_BOMMO	FGVRNGLETLSQLIVYDDIRNNLLIVRDVTIKDRPVYPYRGILLDT	220
	CHB VIBHA	AGAFYAVOSIFGLVDSONADS LPOLSIKDAPRFDYRGVMVDV	341
	CHB_SERMA	AGVEYGLOSTI, SLUPSDGSGK TATLDASDAPPEDVPGTFLDV	347
	URY UTDIN		51/
	HEX_VIBVO	AGAF IGVOSINGEVIV-GRDIINQVSINDEFREDIRGMMEDV	324
	HEXE_ALTSO	AAAFYALQSLAGLLDINDL-RIPMVDIIDTPRYDFRGLHVDV	336
	HEXA PORGI	HGAFYGMQTLLQLLPAEVESSNEVLLPMTVPGVEIKDEPAFGYRGFMLDV	179
		· · · · ·	
	HEXA HUMAN	SRHYLPLSSILDTLDVMAYNKLNVFHWHLVDDPSFPYESFTFPELMRKGS	226
	HEXA MOUSE	SRHYLPLSSILDTLDVMAYNKFNVFHWHLVDDSSFPYESFTFPELTRKGS	226
	HEYR HIMAN	SDUVI, DVKTTI, KTI, DAMA ENKENNIL HUHTVDDOG EDVOG TEDDEL GNKOG	250
	HEND NOTICE	Child P WETTERT DAWS INVENTION DOGT PLOST FFEDARCOS	200
	HEAB_MOUSE	SKHLLPVKTIFKTLDAMAFNKFNVLHWHIVDDQSFPIQSTTFPELSNKGS	238
	HEXB_FELCA	ARHFLPVKSILKTLDAMAFNKFNVLHWHIVDDQSFPYQSVTFPELSNKGS	201
	HEXA DICDI	ARHYIPKNMILHMIDSLGFSKFNTLHWHMVDAVAFPVESTTYPDLT-KGA	213
	HEX1 ENTHI	SENDLSPLMFKRTTDTLASVKANVLHTHLSDAOTFVFESKKYPLLHOKGM	200
	HEY1 CANAL	CONFIGURATION CONTRACTOR AND A DOCUMENT AND A DOCUMENTS DA	204
	HEAT_CANAL		447
	HEXC_BOMMO	ARNFISIDSIKRTIDAMAAVKLNTFHWHITDSQSFPLVLQKRPNLSKLGA	270
	CHB_VIBHA	ARNFHSKDAILATLDQMAAYKMNKLHLHLTDDEGWRLEIPGLPELTEVGA	391
	CHB SERMA	ARNFHKKDAVLRLLDOMAAYKLNKFHFHLSDDEGWRIEIPGLPELTEVGG	397
	HEX VIEVI	SENFISKELVER FLOOMAAYKMNKEHEHLADDEGWELETNGLEET TOUGA	274
	MEXT NAMO	SAMP ASKED OF THE DOMANT AND WE WE WE SERVICE IN GHE SET OVER	3/1
	HEXE_ALTSO	ARNFRSKAFILQTIEQMAAYKLNKLHLHLADDEGWRLAIDGLDELTSVGA	386
	HEXA_PORGI	CRHFLSVEDIKKHIDIMAMFKINRFHWHLTEDQAWRIEIKKYPRLTEVGS	229
		••••	
	HEXA_HUMAN	YQDVKEVIEYARLRGIRVL	254
	HEXA MOUSE	FVPVTHIYTAODVKEVIEYARLRGIRVL	254
	HEXE HIMAN	Y	286
	UEVD NOUGR		200
	HEAB_MOUSE	IS-LSHVITPNDVRMVLBIARLRGIRVI	405
	HEXB_FELCA	YS-LSHVYTPNDVHTVIEYARLRGIRVI	228
	HEXA DICDI	FSP-SATFSHDDIQEVVAYAKTYGIRVI	240
	HEX1 ENTHI	Y	227
	NEVI CANAL		251
	HEAT_CANAD		251
	HEXC_BOWMO	YSP-TKVYTKQDIREVVEYGLERGVRVE	297
	CHB VIBHA	NRCFDTQEKSCLLPQLGSGPTTDNFGSGYFSKADYVEILKYAKARNIEVI	441
	CHB SERMA	ORCHDLSETTCLLPOYGOGP DVYG-GFFSRODYIDIIKYAOAROIEVI	444
	WEY VIBWII	HECHDURONKCMMDOL CSCARLENNCSCVVTREDVKETLAVASABNTOUT	424
	WEND NIMO		400
	HEAD ALTSO	IRCFDLIETRCLLPQLGAGNDRNAQVNGFISAEDIIEILRIARAHHIEVL	436
	HEXA_PORGI	TRTEGDGTQYSGFYTQEQVRDIVQYASDHFITVI	263
	HEXA HIMAN	AEEDTPGHT-LSWGPGTPGLLTPCYS-GSEPSG	285
	NEXT NOUCE		205
	HEAM_HOUSE	AEFDIPGAT-LSWGPGAPGELIPCIS-GSALSG	485
	HEXB_HUMAN	PEFDTPGHT-LSWGKGQKDLLTPCYS-RQNKLD	317
	HEXB MOUSE	PGFDTPGHT-QSWGKGQKNLLTPCYN-QKTKTQ	296
	HEXB FELCA	PEFDSPGHT-OSWGKGOKDLLTPCYN-EHKOSG	259
	HEXA DICDI	PEEDIPCHA-AAWGIGYPEI.VATCPDVAANV	270
	UEV1 ENTUT		250
	HEAT_ENTHI	GEIDIFARI - AS	439
	HEAL_CANAL	PEIDMPGHARAGWRQVDPTIVECADAFWTDAAV	284
	HEXC BOMMO	PEFDAPAHVGEGWQDTGLTVCFKAEP-WTKFCV	329
	CHB VIBHA	PEIDMPAHARAAVVSMEARYDRLMEEGKEAEANEYRLMDPODTSNVTTVO	491
	CHRSEPMA	DETIMDANA - A BUUSMEA BYYKI HAA CKEOFANEPPI. UDPTDTSNTTSVO	403
	HEY VIDINI	DOWDWDCHCI, A AVKOMFA DVDKFMA BODWDVA BWYL I ODDWDWOUTO	474
	HEX_VIBVO	PSMDMPGASLAAVKSMEARIRKFMAEGDVVKAEMILLSDPND11QIISIQ	4/4
	HEXE_ALTSO	PSLDMPGHSRAAIIAMEARYKKLMAQGKPEDAQKYRLVETADKTRYSSIQ	486
	HEXA_PORGI	PMIEMPGHAMAALAAYPQFRCFPREFKPRIIWGVE	298
		E · ·	
	HEXA_HUMAN	TFGPVNPSLNNTYEFMSTFFLEVSSVFPDFYLHLGGDEV-	324
	HEXA MOUSE	TFGPVNPSLNSTYDFMSTLFLEISSVFPDFYLHLGGDEV-	324
	HEXE HUMAN	SFGPINPTINTTYSFLTTFFKEISEVFPDOFTHLGGDEV-	356
	HEXE MOUSE	VEGPVDPTVNTTYAFFNTFFKETSSVEDOGETHI CODEV	335
	UEVE FELCI	TEC DINDII NORVARI CORRENOME DEVINITI CORRENOM	222
	MEAD FELCA	IFGPIMPILMALINFLAQFFKEVSMVFPDHFVHLGGDEV-	498
	HEXA_DICDI	NN~1PLD1SNPATFTFIQNLFTEIAPLFIDNYFHTGGDEL-	309
	HEX1_ENTHI	RYGENV-LSLNPANPNTFPIIDALMKELSDTFGTDYVHVGGDEV-	302
	HEX1 CANAL	EPPP-GQLNIESEKTYEVISNVYNELSDIFIDDVFHVGNDEL-	325
	HEXC BOMMO	E PPC-GOLNPTKEELYDYLEDTVVEMAEAFE STDMERNGODEV-	371
	CUB UTBUN	EVNUOCETNION _ ECOMPRIMENTATIVA ANTONA CART ANGULY	571
	CRB_VIBHA	FINAUSFINFCH-ESSTRFVDKVISEVAAMMQEAGAPLTTWHFGGDEAK	539
	CHB_SERMA	FFNRQSYLNPCLDSSQRFVDKVIGEIAQMHKEAGQPIKTWHFGGDEAK	542
	HEX VIBVU	HYQDNT-INPCMESSFVFMDKVIDEINKLHKEGGQPLTDYHIGADETA	521
	HEXE ALTSO	HYNDNT-LNVCIANTYTFIDKVLSEVKVLHDRAGVPLNTYHTGADETA	533
	HEXA PORGI	QDVYCAGKDSVFRFISDVIDEVAPLFPGTYFHIGGDECP	337
		* • • *	
h	L		
N	r		
	HEXA_HUMAN	IGGEACMWGEYV-DNTNLVPRLWPRAGAVAERLWS	486
	HEXA_MOUSE	IGGEACMWGEYV-DSTNLVPRLWPRAGAVAERLWS	485
	HEXB HUMAN	IGGEACLWGEYV-DATNLTPRLWPRASAVGERLWS	515

	reenter point in the function of the first o	105
HEXB HUMAN	IGGEACLWGEYV-DATNLTPRLWPRASAVGERLWS	515
HEXE MOUSE	IGGEACLWGEFV-DATNLDSKIMPRASAVGERLWS	494
HEXB FELCA	IGGEACLWGEFV-DATNLTPRLWPRASAVGERLWS	457
HEXA DICDI	IGGEATMWAEQI-NQVNWDVRVWPRAIGIAERLWS	469
HEX1 ENTHI	LGGEGCSWGEST-DEQNFFDRVFQRYSAIAERLWS	475
HEX1 CANAL	LGREAALWSEQV-DSTVLTTKIWPRTAALAELTWS	506
HEXC BOMMO	LGGEVALWSEQS-DPATLDGRLWPRAAAFAERMWA	552
CHB VIBHA	YGLSAQLWSETVRNDEQYEYMVFPRVLAAAQRAWH	763
CHB SERMA	YGLSAQLWSETQRTDPQMEYMIFPRALSVAERAWH	763
HEX VIBVU	LGVQGALWSETIRTDAQVEYMVLPRMIAVAERGWH	726
HEXE ALTSO	AGLQGHLWSEMLRSDAQAEYMLYPRLLALAERAWH	727
HEXA PORGI	LGAQANLWAEYLYTSERYDYQAYPRLLAVAELTWT	503
-		

FIG. 4. Multiple alignment of two regions of family 20 glycosyl hydrolases (*a* and *b*). Asterisks (*) indicate invariant glutamate residues Glu- α 307, Glu- α 323, and Glu- α 424. Residues at which B1 mutations occur (Arg- α 178 and Asp- α 258) are marked by (**I**). Other invariant residues are also indicated (·).

ticipate in substrate cleavage. In this study, we attempted to identify acidic residues in the Hex A α subunit which may participate in the active site of Hex A.

Since our studies involved the use of a novel TSD-NG expression system, we first evaluated expression in this system of wild type and mutant *HEXA* cDNAs. Transient expression of mutant *HEXA* cDNAs in COS1 cells (reviewed in Brown and

FIG. 5. Western blot analysis of TSD-NG cells transfected with pCMV α E307D (307), pCMV α E323D (323), pCMV α E462D (462), and pCMV α (N). Lane M represents mock-transfected cells.

Mahuran (34)) has several disadvantages which are overcome in the TSD-NG expression system. COS1 cells exhibit a high level of endogenous Hex A and Hex B activity which compromises the analysis of low levels of Hex activity expressed by mutant *HEXA* cDNAs. Furthermore, because the cells are of heterologous origin, human *HEXA* gene mutations are expressed in COS1 cells as the non-physiological isozyme Hex S (7, 37, 38), an $\alpha\alpha$ homodimer which differs from Hex A both in stability and substrate specificity. As a result, the activity of mutant α subunits produced following transfection of mutant *HEXA* cDNAs, does not correlate well with clinical severity of disease or biochemical phenotypes observed in patients (34, 35).

In contrast, TSD-NG cells, produce no endogenous α subunits. Endogenous expression of *human* β subunits in these cells, however, permits dimerization with transfected human α subunits, to form active Hex A. When wild type α subunits are overexpressed in TSD-NG cells, β subunit concentration limits the formation of Hex A. As the β subunits become depleted, excess α subunits dimerize to form Hex S, distinguishable from Hex A by chromatofocusing. The presence of both the precursor (67 kDa) and mature (54 kDa) forms of α subunit following transfection confirms that newly synthesized α subunit can be normally processed and targeted to the lysosome, but also indicates that excess α subunits are poorly processed in the absence of β subunits.

We evaluated the expression in TSD-NG cells of α subunits carrying mutations associated with acute (α R170W), subacute (α G250D), and chronic (α G269S) forms of GM₂ gangliosidosis, respectively, and demonstrated that residual enzyme activity was inversely correlated with disease severity. Results for the α R170W mutation confirmed our previous report (11), that this mutation causes the classical infantile form of TSD. We proceeded to use this expression system to evaluate the role of candidate active site residues.

The four acidic amino acids we examined were chosen on the basis of (a) occurrence in the B1 variant of Tay-Sachs disease (Asp- $\alpha 258$) or (b) conservation in family 20, a sequence related family of glycosyl hydrolases (α 307, α 323, and α 462). The TSD-B1 phenotype is believed to be caused by mutations which lead to substitution of residues with catalytic function (4, 7, 10). These include the basic residue Arg- α 178 (4, 8–10) (which is invariant in family 20 enzymes) and the acidic Asp- α 258 (7, 10). Conservative substitutions at these positions have little affect on K_m but dramatically reduce the $V_{\rm max}$ of Hex A (7). The residues Glu- α 307, Glu- α 323, and Glu- α 462 were selected on the basis of their evolutionary invariance in family 20 glycosyl hydrolases (39), a classification system (29) based on amino acid sequence similarity. Members of homology families generally share folding characteristics and catalytic residues within families are strictly conserved (40). The three glutamate residues are invariant at homologous positions in all members of family 20. The position corresponding to Asp- α 258 shows variation in a single enzyme which carries the functionally related acidic residue glutamate at this position.

Analysis of residual enzymatic activity and α subunit maturation in cells transfected with *HEXA* cDNAs carrying conserv-

FIG. 6. Lineweaver-Burk plots of wild type and α E323D mutant Hex A for hydrolysis of 4MUGS in the absence (\blacklozenge), or presence (\blacktriangle) of 10 mm *N*-aetylglucosamine-6-phosphate. K_m for wild type Hex A = 1.7 mm. K_m for α E323D Hex A = 2.5 mm. K_i for wild type Hex A = 11.0. K_i for α E323D Hex A = 15.6 mm.

FIG. 7. Predicted structure of the $(\beta \alpha)_8$ of hexosaminidase showing the apposition of residues Arg- α 178, Asp- α 258, and Glu- α 323 in the active site pocket.

ative or isosteric substitutions at residues Glu- α 307 and Glu- α 462 led us to conclude that these residues are unlikely to have catalytic functions. Residual Hex A activity associated with both mutations was too high to be compatible with the loss of either an acid catalyst or a proton donor. Furthermore, the α E307D substitution prevented α subunit maturation (Fig. 5). In contrast, both the isosteric substitution α D258N and the conservative substitution α E323D were associated with production of mature Hex A with drastically reduced enzyme activity. Since maturation of the α subunit is dependent on dimerization with the β subunit, we were also able to conclude that the α D258H and α E323D mutations are compatible with production of normal amounts of $\alpha\beta$ heterodimer and that loss of activity is not the result of compromised dimerization. Furthermore, kinetic analysis of residual Hex A activity in α E323D

transfected cells (Fig. 6) or α D258H in patient fibroblasts (7) demonstrates that loss of enzymatic activity is the consequence of decrease in k_{cat} rather than a change in K_m .

Our proposal that Asp- α 258 and Glu- α 323 are catalytic residues is in accord with results of other structure/function studies. The x-ray crystallographic structure for *Serratia marcescens* chitobiase, the first member of family 20 glycosyl hydrolases to be crystallized, was recently reported (26, 40, 42). Residues Glu-519 and Glu-740 of chitobiase are not located at or near the active site of the bacterial enzyme suggesting, by analogy, that the homologous residues, Glu- α 307 and Glu- α 462, in the α subunit of Hex A would also not be present at the the α subunit active site. Most significantly, the x-ray crystallographic data (26) identify Glu-540, the residue corresponding to Glu- α 323, as the acid catalyst in the *S. marcescens* enzyme.

Members of family 20 glycosyl hydrolases share a conserved central region which aligns in all members of the family (Fig. 4). According to the crystal structure of chitobiase, this region comprises the catalytic domain which has an α/β barrel fold (26). The modeling of the catalytic domain of Hex A (Fig. 7) (26), brings Arg- α 178, Asp- α 258, and Glu- α 323 in proximity within the substrate binding cleft (facing toward the center of the α/β barrel) and spatially arranged to facilitate catalysis. In contrast, Glu- α 307, Glu- α 462, and Asp- α 163 which corresponds to Asp- β 196, a residue recently proposed as an active site residue in the β subunit (44), appear to be remote from the catalytic domain. While it is likely that the model, illustrated in Fig. 7, will contain some errors in its proposed structure of Hex A, the high degree of conservation of residues in and around the active site suggest that the model is much less prone to errors in the active site pocket of the enzyme.

A role for Glu- α 323 at the Hex A active site is also supported by the studies of Liessem *et al.* (43). Using a mechanism-based pyrrolidine substrate analog, this group identified residue Glu- β 355, which corresponds to Glu- α 323, as the only reactive residue at or near the β subunit active site. The role of Arg- α 178 is less clear. Given the high pK_a of arginine (12.0) it is unlikely that this residue functions as a nucleophile at the pH optimum of Hex (3.9-4.2). The role of active-site arginine may be to maintain the acid catalyst in its protonated state at a pH which is significantly higher than the pK_a for dicarboxylic amino acids.

The extensive sequence similarity of the α and β subunits underscores the structural and catalytic similarity of two subunits of Hex A. Chimeric Hex enzymes, generated by the fusion of different segments of the α and β subunits have recently been used to identify domains required for substrate specificity (41, 45). The structural modelling of Hex should now permit the more precise localization of other residues involved in the active site as well as in other functions of the enzyme, such as dimerization, substrate binding and activator recognition.

Acknowledgments-We thank Franelli Yadeo and Daniel Phaneuf for advice and technical assistance.

REFERENCES

- 1. Korneluk, R. G., Mahuran, D. J., Neote, K., Klavins, M. H., O'Dowd, B. F., Tropak, M., Willard, H. F., Anderson, M.-J., Lowden, J. A., and Gravel, R. A. (1986) J. Biol. Chem. 261, 8407-8413
- 2. Proia, R. L. (1988) Proc. Natl. Acad. Sci. U. S. A. 85, 1883-1887 Kresse, H., Fuchs, W., Glossl, J., Holtfrerich, D., and Gilberg, W. (1981) J. Biol. Chem. 256, 12926–12932
- 4. Kytzia, H.-J., and Sandhoff, K. (1985) J Biol. Chem. 260, 7568-7572
- 5. Burg, J., Conzelmann, E., Sandhoff, K., Solomon, E., and Swallow, D. M. (1985) Ann. Hum. Genet. 49, 41-45
- 6. Gravel, R. A., Clarke, J. T. R., Kaback, M. M., Mahuran, D., Sandhoff, K., and Suzuki, K. (1995) in *The Metabolic Basis of Inherited Disease* (Scriver, C. R., Beaudet, A. L., Sly, W. S., and Valle, D., eds) 7th Ed., pp. 2839–2882, McGraw-Hill, New York
- 7. Bayleran, J., Hechtman, P., Kolodny, E., and Kaback, M. (1987) Am. J. Hum. Genet. 41, 532–548
- 8. Brown, C. A., Neote, K., Leung, A., Gravel, R. A., and Mahuran, D. J. (1989) J. Biol. Chem. 264, 21705–21710
- 9. Ohno, K., and Suzuki, K. (1988) J. Neurochem. 50, 316-318
- Brown, C. A., and Mahuran, D. J. (1991) J. Biol. Chem. 266, 15855–15862
 Fernandes, M., Kaplan, F., Natowicz, M., Prence, E., Kolodny, E., Kaback, M.,
- and Hechtman, P. (1992) Hum. Mol. Genet. 1, 759-761 12. Sinnott, M. L. (1990) Chem. Rev. 90, 1171-1202
- 13. Miao, S., McCarter, J. D., Grace, M. E., Grabowski, G. A., Aebersold, R., and Withers, S. G. (1994) J. Biol. Chem. 269, 10975-10978
- Withers, S., Antony, R., Warren, J., Street, I., Rupitz, K., Kempton, J., and Aebersold, R. (1990) J. Am. Chem. Soc. 112, 5887–5889
 Withers, S., Ruptiz, K., Trimbur, D., and Warren, R. (1992) Biochemistry 31,
- 9979-9985

- 16. Tomme, P., and Claeyssens, M. (1995) FEBS Lett. 1989, 239-243
- 17. Hermans, M. M. P., Kroos, M. A., van Beeumen, J., Oostra, B. A., and Reuser, A. J. J. (1991) J. Biol. Chem. 266, 13507-13512
- 18. Mitsuishi, Y., Nitisinprasert, S., Saloheimo, M., Biese, I., Reinikainen, T., Claeyssens, M., Keraenen, s., Knowles, J., and Teeri, T. (1990) FEBS Lett. 275, 135-138
- Navas, J., and Béguin, P. (1992) Biochem. Biophys. Res. Commun. 189, 807-812
- Wang, Q., Tull, D., Meinke, A., Gilkes, N. R., Warren, R. A. J., Aebersold, R., and Withers, S. G. (1993) J. Biol. Chem. 268, 14096–14102
- 21. Wacker, H., Keller, P., Falchetto, R., Legler, G., and Semenza, G. (1992) J. Biol. Chem. 267, 18744–18752
- 22. Gebler, J. C., Aebersold, R., and Withers, S. G. (1992) J. Biol. Chem. 267, 11126-11130
- 23. Cupples, C. G., Miller, J. H., and Huber, R. E. (1990) J. Biol. Chem. 265, 5512-5518
- 24. Milewski, S., O'Donnell, R., and Gooday, G. (1992) J. Gen. Microbiol. 138, 2545 - 2550
- 25. Holm, L., and Sander, C. (1994) FEBS Lett. 340, 129-132
- 26. Tews, I., Perrakis A., Oppenheim, A., Dauter, Z., Wilson, K. S., and Vorgias, C. E. (1996) Nat. Struct. Biol. 3, 638-648
- 27. Legler, G., and Boolhagen, R. (1992) Carbohydr. Res. 233, 113-123
- 28. Legler, G., Lullau, E., Kappes, E., and Kastenholz, F. (1991) Biochim. Biophys. Acta 1080, 89-95
- 29. Henrissat, B. (1991) Biochem. J. 280, 309-316
- 30. Lake, B. D. (1974) Histochem. J. 6, 211-218
- 31. Hearing, J., Hunter, E., Rodgers, L., Gething, M., and Sambrook, J. (1989) J. Cell Biol. 108, 339-353
- 32. Bayleran, J., Hechtman, P., and Saray, W. (1984) Clin. Chim. Acta 143, 73-89 33. O'Dowd, B. F., Klavins, M. H., Willard, H. F., Gravel, R., Lowden, J. A., and
- Mahuran, D. J. (1986) J. Biol. Chem. 261, 12680-12685
- 34. Brown, C. A., and Mahuran, D. J. (1993) Am. J. Hum. Genet. 53, 497-508 35. Trop, I, Kaplan, F., Brown, C., Mahuran, D., and Hechtman, P. (1992) Hum. Mutat. 1, 35–39
- 36. Koshland, D. E., (1953) Biol. Rev. 28, 416-436
- 37. Navon, R., Kolodny, E. H., Mitsumoto, H., Tomas, G. H., and Proia, R. L. (1989) Science 243, 1471-1474
- 38. Tanaka, A., Punnett, H. H., and Suzuki, K. (1990) Am. J. Hum. Genet. 47, 568 - 574
- 39. Henrissat, B., and Bairoch, A. (1993) Biochem. J. 293, 781-788
- 40. Davies, G., and Henrissat, B. (1995) Structure 3, 781-788
- 41. Tse, R. Wu, Y. J., Vavougias, G., Hou, Y., Himek, A., and Mahuran, D. J. (1996) Biochemistry 35, 10894–10903
- 42. Tews, I., Vincentelli, R., and Vorgias, C. E. (1996) Gene (Amst.) 170, 63-67
- 43. Liessem, B., Glombitza, G. J., Knoll, F. K., Lehmann, J., Kellermann, J.,
- Lottspeich, F., and Sandhoff, K. (1995) J. Biol. Chem. 270, 23693-23699 44. Tse, R., Vavougios, G., Hou, Y., and Mahuran, D. J. (1996) Biochemistry 35,
- 7599 7607
- 45. Pennybacker, M. Liessem, B., Moczall, H., Tifft, C. J., Sandhoff, K., and Proia, R. L. (1996) J. Biol. Chem. 271, 17377-17382